
LARGE SYNOPTIC SURVEY TELESCOPE
Understanding of Telescope and Site Software situation PSTN-002 Latest Revision 2019-04-15

Understanding of Telescope and Site Software situation
William O’Mullane

2019-04-15

1 Introduction

Having been asked to look at Telescope and Site Software (TSS) after our review in Feb 2018
there are one or two insights which should be shared. As we approach commissioning the
focus of the team will change, there is no simple approach to this sort of system so we need
to be open to the needs of commissioning.

2 Code vs Graphical Interface

There are basic truths which we all hold incorrectly as empirical. I am a programmer I sel-
dom touch a GUI unless I have to. I first saw this explained by Chris Beaumont in Vienna in
2014(Figure 1).

Figure 1: Code and Graphics - Chris Beaumont Vienna 2014.

I had not thought much about this before but this talk crystallized it for me. I do make occa-
sional plots and diagrams to explain things but it is not the norm. My mistake was to think

1



LARGE SYNOPTIC SURVEY TELESCOPE
Understanding of Telescope and Site Software situation PSTN-002 Latest Revision 2019-04-15

all programmers are like this. Worse that all smart users were like this. As with most things
there is a spectrum as as in Figure 1, there are a range of approaches and people who use
them.

TSS approach seems very graphical with an over reliance on GUIs. LabView, though it has
scripting capability, is inherently graphical and many of us are biased against it1. It has good
realtime multi threading capability and was certainly a viable choice for lower level control.
This may also be useful for commissioning but the commissioning team have not bought in
to this mode of working. Looking at the OCS (Observatory Control System) code this also
assumes a GUI, every action like StartNight is assumed to be an action in a GUI2. There seems
no way to call this from a script or command line. It seems naive to think we may be able
to encapsulate this in a compiled routine3 anytime before operations. There was certainly a
need for engineering GUI’s and some users request such things - but we need to take care
that one approach does not suit all.

The LSST users, especially in commissioning, are highly efficient in abstract thinking, scripting
and coding of one form or another. There has, perhaps, been a major misunderstanding of
what users want from the control system. The TSS approach seems to be to provide canned
high level procedures (right of Figure 1), the users want and need amuchmore open and flex-
ible system. The flexibility is totally necessary in commissioning. This may have been achiev-
able with LabView scripting but the commissioning team have invested heavily in Python. The
canned approach is appropriate in later operations, but we have a lot of AIT and commission-
ing to go through first. Right now we do not know the list of procedures, even if we had the
list we could not detail how to do them without going through commissioning - the first need
is a scriptable system for commanding the observatory (left of Figure 1).

3 Predicting State

The second philosophical approach is toward state or the ability to know state. There is a
basic principle in the TSS architecture that everything is Finite State Machine (FSM). Since the
observatory is a series of machines this is strictly true, however we do not know all the pos-
sible states or modes of the machine(s) and we probably will not know them until well into
operations. For individual components We will begin to learn this in commissioning. There
has been a major conflict with TSS team seeking the requirements from the T&S team for sev-

1The license fees do not help
2Actually it is assumed to be a state which is strictly true but semantically unclear.
3In Java

2



LARGE SYNOPTIC SURVEY TELESCOPE
Understanding of Telescope and Site Software situation PSTN-002 Latest Revision 2019-04-15

eral years. LSST is complex and has some novel aspects, I believe TSS are looking for the full
set of modes and states for LSST - I also believe it is impossible to know that for an as yet built
system like LSST. Hence can one ever build an FSM for operations it before it is complete ?

The FSM is the correct approach but it can not be applied system wide, i.e. at Telescope or
Observatory level it is unclear this is the correct approach. We all fall in the trap of general-
ization. In this case trying to apply the FSM approach to the entire system will never work and
has locked the TSS team up in an impossible task - the team has been waiting for the require-
ments (which define states) while many of us understand we will not know those states until
we are on the mountain with the actual hardware. This is not to suggest we should not have
requirements, the level of detail we may get is not always sufficient plus we need to take care
of over defining scope - we have to make the entire system work.

The FSM approach is inherently restrictive it allows one to do exactly what is prescribed. A
new observatory like LSST, especially in commissioning, needs amuchmore flexible and open
approach. A very restrictive system with only allowed transitions often leads to ta situation
where the system will not allow an activity even if the users/engineers/observatory scientist
agree it is the correct action. Again this is probably ok in operations but not in commissioning.

For Example, at some point wewill need tomanipulate the louvers to control air flow. Howwe
do that will depend on wind and temperatures - we do not know today how that will be done.
There will probably be some formula taking account of temperature inside the dome and
airflow outside the dome. Initially we 4 will possibly adjust the louvers until we understand
how they work over many nights, we may experiment with a number of formula looking at
EFD and sending SAL commands. This of course can be built into a FSM using some algorithm
selection. This requires a very flexible system, not an FSM though of course once could make
a more flexible FSM.

The above is an over simplification and a potential explanation for some of my observations.

4 Way forward

The Service Access Layer (SAL) gives a well defined interface to all components in the system
no mater the implementing language. We have constructed a Python component complying
to this interface, this both allows us to quickly write a new component and to remote interact

4The royal we here is really the commissioning team and operators.

3



LARGE SYNOPTIC SURVEY TELESCOPE
Understanding of Telescope and Site Software situation PSTN-002 Latest Revision 2019-04-15

with any other component using Python. Hence this module gives scripting capability to the
Telescope and Site Software with the full power of Python. An update to LSE-150, the TSS
architecture, is underway to explain the current architecture, Figure 2 gives the high level
SalObj view.

Controller

BaseCSC

SalInfo

ControllerEvent

ControllerCommand

ControllerTelemetry

State

YourCSC
do_command_1()

do_command_2()

Remote

SalInfo

RemoteEvent

RemoteCommand

RemoteTelemetry

SAL
Commands

AnotherCSC

Figure 2: SalObj is a Python module for implementing and interacting with Controllable SAL
Components (CSCs) which allows for flexible Python scripting.

We are also addressing the planning in Primavera and Jira. We are starting with the approach-
ing AuxTel milestones and building a plan to deliver the required components and environ-
ments to make that successfully. We will concentrate on making individual components ro-
bust and building Python scripts to achieve high level coordination - less prominence will be
placed on the control system components (ATCS, OCS, TCS) for now.

There have been some management setbacks which are also being dealt with most recently
by Andy Clements agreeing to be interim lead for the team.

5 Conclusion

In TSS we need to focus on a flexible programmable interface to meet the primary needs of
AIT and commissioning. Meanwhile we have an INRIA contract to build a graphical interface
for Operations (and possibly some of commissioning). This of this very much in the terms of
hackable user interface (Beaumont et al., 2015). We also do need to be aware of the safety of

4



LARGE SYNOPTIC SURVEY TELESCOPE
Understanding of Telescope and Site Software situation PSTN-002 Latest Revision 2019-04-15

operating the system - as we build up scripts for testing, AIT and commissioning we will start
to build more constraints into the system - we should not try to build all constraints in from
the start.

A References

Beaumont, C., Goodman, A., Greenfield, P., 2015, In: Taylor, A.R., Rosolowsky, E. (eds.) As-
tronomical Data Analysis Software an Systems XXIV (ADASS XXIV), vol. 495 of Astronomical
Society of the Pacific Conference Series, 101, ADS Link

B Acronyms used in this document

Acronym Description
AIT Assembly, Integration, and Test
ATCS Auxiliary Telescope Control System
EFD Engineering Facilities Database
FSM Finite State Machine
GUI Graphical User Interface
INRIA French research institute for digital sciences
LSE LSST Systems Engineering (Document Handle)
LSST Large Synoptic Survey Telescope
OCS Observatory Control System
PST Project Science Team
PSTN Project Science Technical Note
SAL Service Access Layer
T&S Telescope and Site
TCS Telescope Control System
TSS Telescope and Site Software

5

http://adsabs.harvard.edu/abs/2015ASPC..495..101B

	Introduction
	Code vs Graphical Interface 
	Predicting State
	Way forward
	Conclusion
	References
	Acronyms used in this document

